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Abstract

This report presents 2D radiographic reconstructions using the method of Prior Sin-
gular Value Decomposition (pSVD). The technique utilizes (typically minimal) prior
knowledge of the object to enhance reconstructions by the inclusion of projection oper-
ator null space vectors. Examples of prior knowledge illustrated in this report are that
the object density is: (1) non-negative; (2) bounded above and below; (3) binary; and
(4) of a known set of discrete values. Several test objects and simulated noisy data
are used to illustrate the method. While the pSVD method is new to our knowledge,
the intent of this report is not to establish novelty but to present ideas which may be
helpful to the experimentalist.

One set of actual proton radiographs taken at LANSCE is used to verify the method.
The radiographed object (BCO4) was viewed from 31 equally spaced angles and re-
mained static. The pSVD reconstructions are shown to be superior to the standard
filtered back projection reconstructions.

It is found that known constraints improve reconstructions by any reasonable met-
ric. Even for the simple constraints discussed here, the null space enhancements can
be significant. In some cases sparse noisy data is sufficient for essentially exact recon-
structions. The implications for experiments with limited data are obvious.

The pSVD methods are then applied to the number of views question critical to
AHF feasibility studies. It is observed that these null-space enhancement methods
can significantly reduce the number of views required to obtain a given reconstruction
quality.

The last section of this report catalogs many reconstruction examples of test objects.
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1 Executive Summary

1.1 Research Goals

The research described in this report was aimed at the improvement of radiographic reconstruc-
tions over standard methods through the use of typically minimal prior information. Standard
methods, such as filtered back projection (FBP) and non-enhanced SVD inversion are often yield
disappointing results due to the sparsity of the data and to the presence of noise in the data. In this
research we seek to consider efficient and principled methods for producing significantly enhanced
radiographic reconstructions using minimal knowledge. We desired to test the applicability of our

methods both on simulated and actual data.

1.2 Importance and Context

Los Alamos National Laboratory has great interest and great investment in experiments producing
radiographs and radiograph like data. Well-reasoned and optimal treatment of such data is critical
for obtaining the best understanding of the physics behind the experiment. Applications at LANL
include material property and damage inspection, 2D and 3D fluid dynamic studies, subcritical
testing and hydrodynamic simulations. Of particular interest are design and feasibility studies on
the Advanced Hydrotest Facility (AHF).

1.3 Current Results

We demonstrate in this report (and in referenced previous work) that an SVD-based approach
provides a radiographic reconstruction framework that (1) is optimal relative to the metric of choice,
(2) quantifies uncertainty in the reconstruction, (3) quantifiably tracks inversion-error propagation
and (4) can incorporate prior knowledge in a natural way. Specifically we show that the pSVD
method described here is superior to previous FBP and SVD methods even to the point of providing
essentially exact reconstructions from sparse noisy data. We show that the pSVD method works
extremely well on a variety of simulated data sets and for the single real data set to which it was
applied. We demonsrate that the pSVD approach can provide quantitatively similar reconstructions

relative to standard approaches while requiring half or less the amount of data (number of views).

1.4 Related Ongoing and Future Work

Currently we are developing and applying data-constrained total variation (TV) regularization to
radiographic data. Our initial results are showing that, in many cases, the resulting reconstructions
far exceed the quality of even the pSVD solutions [3, 4]. We also continue to develop methods of
2D and 3D reconstructions from single-view dynamic radiographic experiments. These methods
utilize known or partially-known physical constraints [6]. Work also continues in efficient object

parameterization.



2 Introduction

This section contains a short review of the sparse-data radiographic problem and the use of SVD
methods as a principled approach to quantitative evaluation of reconstructions. The concept of
null space enhancements is then presented in general terms leading directly to the prior singular
value decomposition (pSVD) method.

2.1 Quick Review of the Problem

This second in a series of reports continues to address the problem of making optimal use of sparse
noisy radiographic data for accurate object reconstructions. The sparsity of data includes not
only the spatial resolution of detectors but, more critially, too few viewing angles. In large-scale
dynamic experiments, the number of views is often limited to a few or to one! The proposed
Advanced Hytrotest Facility (AHF) at Los Alamos National Laboratory (LANL) will provide up
to 12 simultaneous views and up to 20 time shots to capture sub-microsecond dynamics. From a
medical imaging viewpoint such data as will be available through the AHF is extremely sparse.
But from a hydrodynamics testing viewpoint this data will be very rich!

Standard inversion techniques such as filtered back projection (FBP) perform very well in
situations with a larger number of views (hundreds or more) such as medical tomography. However,
they perform very poorly when the number of views is limited because the 2D Fourier inversion
simply cannot capture the detail. In addition, the effects of noise are difficult to quantify. And yet,
FBP remains a standard inversion technique in spite of the known shortcomings.

The use of Singular Value Decomposition (SVD) methods provides a principled approach to
optimal quantifiable reconstructions with sparse noisy data. In the previous report [2], SVD meth-
ods were shown to be useful in addressing questions of experiment design (number of views and
views placement), object parameterization, quantitative reconstruction statistics, and the effects of
noise. The use of SVD for inverse problem regularization is, in itself, not new. See, for example,
Vogel [7] and references therein. This report focuses closely on how prior knowledge of the object
can be used within the SVD framework to enhance reconstructions.
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Figure 1: An illustration of the singular value decomposition of a matrix II.
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A very brief review of SVD will serve to reintroduce notation and basic concepts. If the reader is
unfamiliar with SVD then it will be very helpful to review [5]. In this linear approach, a projection

operator II describes the mapping from N object parameters to M data set values. For example,
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the object is often described by the densities in N voxelation grids and these densities can be
linearly projected onto detectors with M total pixels. For the underdetermined problem M < N.
The SVD of II is illustrated in Fig. 1. The decomposition can be written IT = Q * £ % PT where Q
and P are orthogonal and 3 is diagonal. The columns of () span the range of II and thus provide
an orthogonal basis for the data space. The rows of P! span the domain of II providing a basis for
the object representation space. The singular values o; are non-negative and arranged in decreasing
order. Let oy be the smallest singular value such that o > 0y for some cutoff value oy (chosen
for controlling noise amplification in inversions from the data space into the object space). Then
the first k rows of P” span the space of reconstructable objects, and the last N — k rows of PT
span the space of objects invisible to II (the null space of II).

2.2 Null Space Enhancements and the pSVD Method

The N-dimensional object space is illustrated in two dimensions in Fig. 2. The space is divided into
the null space, N = span{pg+1,Pk+2,---»pn} and the reconstruction space, V = span{pi,p2, -.-, Pk }
The object is assumed to be sufficiently well represented by some object X within this space.
(If the object can be described within span{pi,...,pn} then X is the object.) The initial SVD
reconstruction is given by Xy (the projection of X onto V). The only difference between X and X
is some unknown null space vector, IIy X, the projection of the object onto N.

Now suppose some object Y7 can be chosen within our space whose null space projection is
directed toward X. In other words, suppose a Y7 can be chosen based on our knowledge of Xy and
possibly some knowledge of X such that X; = Xy +II\Y; is a better approximation of X than Xj.
Next choose a new object Yo based upon knowledge of any or all previous reconstructions. Then
the new null space correction leads to Xo. This process can be repeated indefinitely, and if the
choices of Y; are careful this leads to a much improved reconstruction.

Clearly, it is possible to make a poor choice for some Y;, for example Y4, so that the correction
null vector leads away from X. So it might seem that within the (N — k)-dimensional null space
a poor choice is likely. Fortunately, this turns out to not be the case for some very important and
useful experiments.

The effects of noise in the data can pose some problems for this type of enhancement. The result
is that the X; will not always converge toward X but to some object X within some neighborhood
of X. The neighborhood is determined by prior knowledge of the object used in selecting the Y;.
Fortunately, again, even minimal knowledge about the object can tightly constrain the size of the
neighborhood for many cases of interest.

The central problem of the Prior Singular Value Decomposition (pSVD) method is a systematic
and useful selection of the Y;. How does one choose the prior objects which give helpful null space
corrections? How much knowledge about the actual object is necessary? When is it possible to
obtain an essentially exact reconstruction (X; — X)? These questions are addressed by example
in the following section.

It is important to note how the pSVD method treats noise in the data. The SVD of the projec-



tion matrix and careful inversion ensures that data noise is not magnified onto the reconstruction
space. That’s all! Knowledge of the nature of the data is not required. Noisy data is niether
smoothed nor otherwise altered. The success of the pSVD method, however, does depend upon
the statistical nature of the noise. If the noise is Poisson and uncorrelated among detector pixels
then minimal prior knowledge allows pSVD to obtain excellent reconstructions from within initially

noisy reconstructions.

N=span{py.;, Pri> - P/

V=span{p,, p,, ..., P}

Figure 2: A 2D representation of the N-dimensional object space for a typical underdeter-
mined inversion. The reconstruction space V is spanned by k£ vectors. The null space N is
spanned by the remaining N — k vectors. The object is given by X and the SVD reconstruc-
tion is the projection of X onto V, IIyX = Xy. Objects used as priors for the pSVD method
are shown as Y; and the corresponding pSVD reconstructions as Xj.



3 Examples Using Test Objects

Several test experiments were conducted for examining the usefulness of the pSVD method. This
section begins by describing the test objects and the data generation process for these examples.
Next, four prior-knowledge scenarios are described which are commonly found in radiographic
experiments. Finally, many examples of reconstructed objects are shown and discussed.

3.1 Object Descriptions

Five 2D standard test objects were used in this study of the pSVD methods. They have been
previously described [1], but we provide a brief description here. The objects are shown in Fig.
3. Each object is analytically defined on a 2D region independent of any finite sampling. For the
purpose of displaying the figure, however, each object is sampled on a 512x512 square voxel grid.
The objects are known by the names TOn (test object number n). All densities lie in the range
[0,1].

The first object (TO1) has unit density in a region between two non-concentric circles and zero
density otherwise. This object might represent, for example, a 2D transverse section of a cylidrical
rod with a removed axially-parallel cylindrical section. The density is exactly binary.

The second object (TO2) has unit density inside a circle (the same size as the outer bound-
ing edge of TO1) except for six overlapping zero-density triangular regions. This object is an
idealization of high-stress damage which might occur to a cylindrical rod. The void fraction is
10.5%.

The third object (TO3) is a sum of constant density circular patches with a circular zero density
patch stamped out of the middle. Thus, the density disribution is strictly discrete with values from
the set {0, 0.25, 0.5, 0.75 1}. This object can be thought of as an idealization of a collection of
uniform density objects.

The fourth object (TO4) has a smooth spatial density-distribution. The densities vary con-
tinuously from zero to unity over the object. This object can be thought of as a 2D slice of a
compressible material in a dynamic experiment.

The fifth object (TO5) is the average of the previous two objects. It is the most complex of the
test objects. It displays a density profile that is smooth except for the discrete jumps corresponding
to the circular outlines of TO3. TO5 might represent a compressible material with the presence of
shocks.

Each of these objects is defined by densities independent of any finite sampling. Reconstruc-
tions, however, are given by discretely voxelized density values. Thus, exact reconstructions are not
possible without knoweldge of the actual object parameterizations. For the purpose of characteriz-
ing reconstruction merit, we have chosen to compare an N-voxel reconstruction with a 100/N-voxel
approximate object. Such a finely (but finitely) sampled object representation provides a balance

between true object characterization and computational efficiency.



Figure 3: Finitely-sampled representations of the five test objects: (TO1) binary density
offset ring; (TO2) binary density internal damage simulation; (TO3) discrete-density stacked
circles; (TO4) smoothly varying density dynamic snapshot simulation; (TO5) average of TO3
and TO4.




3.2 Data Generation

The data used for object reconstructions is generated based on the following scenario. Suppose
a collomated beam of particles passes through the object (the beam being in the plane of the
2D object). The particle stream along any line is attenuated exponentially according to the total
mass through which it passes. In this way ‘density’ can be interpreted as an attenuation density
rather than a mass density. A detector counts the particles which pass through or past the object.
The detector is discretized into J pixels. Several of these 1D views of the object are obtained by
considering different beam angles through the object. Together, these L views of J pixels each
compose the noiseless data set of M = JL numbers. For the cases considered in this section
J =200, L = 12, and the views are equally spaced at angles within 180 degrees. The description
is determined by K? values which for simplicity is taken to be object densities on a K x K square
voxel grid. The total detector width is the same width as the physical object space (the length of
J pixels is equal to the length of K voxels).

Experimental random noise is added into the data on the assumption that the particle counts
should exhibit a Poisson distribution without correlation between detector pixel counts. The noise
level will thus be larger for pixels corresponding to beam paths through thick object regions and
smallest for pixels corresponding to beam paths passing outside of the object. The noise level for
these studies (unless otherwise noted) is 5% for the lowest particle counts and 1% for the highest
particle counts. Nonlinear mechanisms, such as multiple scattering and effects of beam strength,
have been ignored.

The noisy particle count data is then inverted to represent a projection of the object mass
onto the detector planes. This noisy data is the input from which the pSVD method attempts to

reconstruct the object.

3.3 Examples of Prior Knowledge

Four examples of prior knowledge are considered along with corresponding prior-object definitions.
Each example is physically reasonable and together they encompass a large body of real applications.

The first example is that objects do not have negative density. In the attenuation density
sense this is equivalent to saying that the object has no particle sources. The prior object Y
obtained from a reconstruction X is defined by the elements y,, = maz(0,z,) where n indexes the
N reconstruction voxels.

The second example is a generalization of the first, namely that the density profile is bounded
above and below. Suppose that some upper bound on the density pp,q; is known. Then the prior ob-
ject Y obtained from a reconstruction X is defined by the elements y,, = maz(min(z,, pmaz)s Pmin)-
Typically the lower bound density is zero since the experiment is best designed to encompass objects
of interest. The studies in this report use ppin, = 0 and pe: =1 -

The third example is that the object is composed of a material of only one nonzero density.
While the second example allows for continuous densities between 0 and pj,q;, this example confines

the densities to either the value 0 or the value p,,4,. In this case it is advantageous in practice



to use the prior of the second example in the pSVD method. Then this prefinal reconstruction is
modified by imposing a density cutoff value p.+ so that densities above this value are set to pmay
and densities below this value are set to zero. The cutoff value is chosen so that the object retains
the correct total mass (determined from the data).

The fourth example is that the object is composed of a discrete set of known densities. This is
the natural extension of the third example and is treated analogously.

It is important to understand that the last two prior enhanced reconstructions do not necessarily
conform to the data. The reconstruction will project to the data (modulo noise) only if the prior
reflects properties of the actual object. Otherwise, the result can be poor both in the object space
and in the data space. This idea might be useful in identifying realistic priors on a case by case

basis.

3.4 Results and Discussion

Each of the six test objects are compared with five reconstructions from the same noisy data
set. The reconstruction methods are the standard SVD with attention to noise (oq = 1), and
enhancements using the four prior knowledge methods described earlier. Grayscale images are
presented in Figs. 4 through 8 and various norms on the reconstructions are given together in
Table 1.

For each figure, subfigure (a) is the object and the remaining subfigures are the pSVD recon-
structions using the following prior information: (b) no prior information (SVD); (c) p > 0; (d)
0<p<1;(e) ped{0,1}; (f) p € {0,0.25,0.5,0.75,1}. Each reconstruction includes only the voxels
within a circular area enclosed by the voxel grid. This is most apparent when viewing the SVD
reconstructions of subfigures (b). The shade of gray outside this circle but inside the square rep-
resents the density value zero. Darker shades indicate negative values and lighter shades indicate
positive values. Each object has a maximal density of one.

It is worth repeating that all of the reconstructions shown in this section are performed on noisy
data. Reconstructions from noiseless data can only be better, and in any case are of academic value

only.

3.4.1 TO1

The first and simplest object (Fig. 4) is reconstructed well using a variety of priors. The initial SVD
solution captures the low spatial frequency information but fails to recover the sharp boundaries
of the two defining circles. This characteristic is common to reconstructions from sparse data.
It is analogous to the imperfect fourier reconstruction of a step function from a finite number of
harmonic basis functions. The result is a smoothed boundary and oscillations away from the edge.

Using the non-negativity prior (Fig. 4c) there is significant improvement. The boundaries are
sharpened, much of the zero density region is correctly recovered, and the density oscillations within
the object are much reduced. The further assumption bounding the density from above to a value

of 1 yields (Fig. 4d) an essentially exact solution at the level of the given voxelation. The other
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priors of this study do not provide additional improvement since they are based upon this bounded

density solution.

3.4.2 TO2

The second test object (Fig. 5) is also reconstructed well using a variety of priors. The initial SVD
solution once again captures the low spatial frequency information. However, it fails to accurately
define the interior structure which is largely of high spatial frequency. The non-negative density
prior (Fig. 5c) does provide some improvement especially in enhancing both inner and outer
boundaries. But the bounded density prior (Fig. 5d) manages to reconstruct the interior features
with remarkable accuracy. With this solution as a base, the binary density prior (Fig. 5e) yields
a solution that is nearly (but not quite!) exact. The discrete density prior (Fig. 5f) does not
perform as well because the assumption is incorrect. Nevertheless, even this ‘poor’ assumption far

outperforms the standard SVD reconstruction.

3.4.3 TO3

The third test object (Fig. 6) illustrates a case where a discretized density is known. The SVD
solution is typical with smoothed boundaries and oscillations with spatial frequency characteristic
of the number of views. Imposing non-negativity in the density (Fig. 6c) provides remarkable
enhancement with boundary sharpening and oscillation suppression. Bounding the density (Fig.
6d) does not make significant additional changes since much of this object’s density lies well below
the maximum density. Assuming that the density is binary (Fig. 6e) is a very bad prior indeed.
The reconstruction retains only the most rudimentary resemblance to the actual object. This is
simply a consequence of the object being not binary in density. And finally, if the discrete density
set is known and imposed as a prior (Fig. 6f) then the object is very well reproduced.

3.4.4 TO4

The fourth test object (Fig. 7) is smooth. This object is the most complex examined thus far. The
now familiar SVD solution is not surprising as a blurred and wrinkled version of the object. The
non-negative density and bounded density solutions are much improved reconstructions showing
improved zero density detection and significant high-spatial frequency content. However they retain
many spurious features. The final two reconstructions are based upon discrete density assumptions

and perform quite poorly as expected.

3.4.5 TO5

The fifth test object (Fig. 7) combines the tasks of reproducing both smooth and sharp features.
The SVD reconstruction does a fair job at capturing the low spatial frequency content of both. The

bounded density reconstructions are much better, providing the characteristic boundary sharpening,
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spurious oscillation reduction, and zero density detection. Again, the final two reconstructions are

based upon discrete density assumptions and perform quite poorly as expected.

12



000

Figure 4: Reconstruction examples of object TO1. This object (a) has binary density. The
pSVD reconstructions use the following prior knowledge: (b) none; (¢) p > 0; (d) 0 < p < 1;
(e) p€{0,1}; (f) p € {0,0.25,0.5,0.75,1}



Figure 5: Reconstruction examples of object TO2. This object (a) has binary density. The
pSVD reconstructions use the following prior knowledge: (b) none; (¢) p > 0; (d) 0 < p < 1;
(e) p€{0,1}; (f) p € {0,0.25,0.5,0.75,1}



Figure 6: Reconstruction examples of object TO3. This object (a) has five evenly-spaced
discrete densities. The pSVD reconstructions use the following prior knowledge: (b) none;
() p>0;(d) 0< p<1; (e) pe{0,1}; (F) p € {0,0.25,0.5,0.75,1}
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Figure 7: Reconstruction examples of object TO4. This object (a) has a (voxelized) smooth
density distribution from zero to one. The pSVD reconstructions use the following prior
knowledge: (b) none; (¢) p>0; (d) 0< p<1; (e) pe€{0,1}; (f) p € {0,0.25,0.5,0.75,1}



Figure 8: Reconstruction examples of object TO5. This object (a) has a (voxelized) smooth
density distribution from zero to one interrupted by circularly bounded discrete density
jumps. This object is the average of TO3 and TO4. The pSVD reconstructions use the
following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 15 (e) p € {0,1}; (f) p €
{0,0.25,0.5,0.75,1}
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3.4.6 Reconstruction Norms

The choice of norm (metric, function of merit, etc.) for some real experiment depends upon the
features of interest. Some possible examples might include: the total absolute density deviation
over the object; the maximal density deviation over the object; the length of some critical boundary;
and the object volume containing a certain density. Clearly all possible norms cannot be examined
for all possible cases. Only a detailed case-by-case experiment evaluation can provide the proper
norm.
For this study the reconstruction merit is examined in terms of three simple norms that capture
a large portion of interesting cases. These norms provide a guideline for considering the merit of
various prior methods. For an object X and a reconstruction R with voxel density values X,, and
R,,, the chosen norms are
Ly(R) = 2t~ fhn) )
> o abs(Xy,)
(Cn(Xn — Ra)*)'/?
(X, (Xn)H)t2 7

maz, (X, — Ry)
mazy(Xy,)

L2 (R) =

(2)

and
Lo(R) =

©)

For example, the Ly, norm is the maximal density deviation over the reconstruction scaled to the
maximal density in the object.

The results for the reconstructions of the test objects are given in Table 1. The left column lists
the objects and the other columns indicate the method of reconstruction, SVD or type of pSVD.
For each object-reconstruction pair the three numbers are the three norms listed in order from top
to bottom. This table quantifies the discussion of the individual reconstructions.

The first three objects (those of discrete density profile) can be reconstructed very accurately.
This is a consequence of the favorable match of object definition and choice of prior. Large values
of the Ly, norm reflect the fact that sharp density boundaries are not precisely reproduced — this
norm finds the worst case voxel. Bear in mind, however, that the reconstructions are from noisy
data.

Smooth objects are more difficult to reconstruct and are best handled through bounded-density

priors (although other better priors are a possibility).
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SVD p>0  0<p<1 pe{0,1} pe{n}

0.180 0.055 0.034 0.023 0.029
TO1 0.190 0.128 0.122 0.151 0.124
0.784 1.000 1.000 1.000 1.000
0.236 0.140 0.052 0.035 0.045
TO2 0.250 0.208 0.154 0.188 0.156
1.207 1.153 1.000 1.000 1.000
0.292 0.110 0.107 0.823 0.043
TO3 0.216 0.147 0.146 0.813 0.150
0.659 0.757 0.799 1.000 0.750
0.377 0.195 0.166 0.390 0.205
TO4 0.291 0.200 0.170 0.416 0.206
0.543 0.436 0.434 0.896 0.507
0.269 0.151 0.151 0.749 0.216
TO5 0.214 0.158 0.158 0.722 0.228
0.414 0.390 0.390 0.840 0.408

Table 1: Reconstruction norms for the various object-prior pairs. The three numerical values

for each pair represent the L1, Lo, and L., norms, repsectively.
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4 LANSCE BCO4 — An Example With Real Data

We now present concrete examples of SVD and pSVD reconstruction techniques using actual proton
radiography data. The experiment was performed at the Los Alamos Neutron Science Center
(LANSCE) facility by a team of researchers from P-25, P-23 and LANSCE-1.

4.1 Experiment and Data Description

The radiographed object is known as BCO4. It is actually two distinct solid 3D objects that are
statically mounted using styrofoam spacers. Multiple-view 2D proton-count data were obtained by
mounting the BCO4 on a horizontal rotation table and performing 31 single-view shots separated
by 6 degrees. The data were then preprocessed to eliminate spurious values and detector-tiling edge
effects. The preprocessed radiograph of the BCO4 at 90 degrees is shown in Fig. 9. This radiograph,
and all others taken at the various rotation angles, forms a 1169 (vertical) by 1220 (horizontal)
pixelated 2D data set. The gray scale is indicative of the proton particle counts received at each
detector pixel. Darker regions indicate lower particle counts and the lighter regions indicate the
greatest particle counts. Thus the large light gray area surrounding the objects represents the
background associated with a nonattenuated beam.

A second view of the BCO4 is shown in Fig. 10. This view is the zero degree view which
is perpendicular to that in Fig. 9. A quick visual comparison of these two views reveals much
about the objects already. For example, the central object appears to be a short cylinder with an
attached wedge-shaped protrusion. Opposite this feature there appears to be a hemispherical(?)
dimple removed from the cylinder. Within this structure is a dense cone-shaped object within
which are two cone-shaped regions of low (zero?) density. The smaller object can be described

similarly.
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Figure 9: The preprocessed radiograph of the BCO4 at the view angle of 90 degrees. Shades
of gray indicate particle count values with the darkest regions representing the fewest counts.
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Figure 10: The preprocessed radiograph of the BCO4 at the view angle of zero degrees.
Shades of gray indicate particle count values with the darkest regions representing the fewest

counts.
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4.2 Reconstructions and General Discussion

For testing the pSVD method we considered the 1D data set constructed by selecting a single row
of data values from each of the 30 views. Our choice was to use pixel row 610 (numbered from the
top) from each view. These data are the particle counts for that part of the proton beam passing
through the approximate center of the large object. The 2D reconstruction from this data will be
a 2D density representation of this object in a plane perpendicular to the detector planes.

The full inversion of this data set into a high resolution reconstruction reqiures much more RAM
than is available on our present workstation (4GB). For this problem we would like to compute
the SVD of a dense matrix of size M x M where M = 36,000. Our current matlab code and
available RAM limits us to M < 7000. Thus, we must reduce the number of views used for the
reconstruction, reduce the data set resolution, or some combination of the two. In order to gain
the most from the pSVD null space correctors we consider a 30 view reconstruction at a resolution
at K = J = 220. The modified data is calculated by summing particle counts from the smaller
high-resolution bins into the larger low-resolution bins. Linear interpolation is used when crossing
bin boundaries (if necessary). The noise level in the data is treated as a complete unknown and
the singular value cutoff for noise suppression is given a value of unity (o = 1).

Two data set inversions are described here in some detail. The SVD-based reconstruction of
BCO4-610 is shown in Fig. 11. The spatial resolution is 220 by 220 pixels. The grayscale is an
uncalibrated linear representation of the object density. The gray level outside of the reconstruction
circle (in the four corner regions of the bounding square) represents zero density. Darker grays
indicate positive density and lighter grays negative density. Reconstruction artifacts seem to be
dominated by (1) azimuthal spatial oscillations of aproximate 60-fold symmetry, and (2) shadowing
associated with large density discontinuities aligned with view angles. Nevertheless, many of the
expected object features are apparent. The major exception is the wedge feature presumably
attached to the right side of the cylinder. It is placed in a region of large reconstruction artifacts
and its size and orientation are comparable to these artifacts. In this reconstruction it is also
difficult to tell whether or not the small interior cones are of zero density or of some small but
nonzero density. The same is true for the density of the hemispherical dimple at the left of the
cylinder.

The pSVD-based reconstruction of BCO4-610 is shown in Fig. 12. The nonnegativity prior
was used for enhancement. There are several changes in going from the SVD solution to the pSVD

solution. Consider the following list.
1. Regions of negative density are virtually eliminated while remaining consistent with the ex-
perimental data. Some negative density artifacts remain near the boundary of the reconstruction

circle. This is a consequence of noise in the data.

2. Regions of zero density are well defined. The entire region surrounding the object is now

noted to be of essentially zero density. In addition, the hemispherical dimple and the two interior

23



cones are now noted to be of zero density. In all of these areas the nonnoise-related artifacts are
absent. There also appears to be a zero density region near the tip of the dense cone. This appears
to be the result of an initial negative density region of the SVD solution related to shadowing. This

is likely a falsely identified zero density region.

3. All of the object boundaries (density discontinuities) are sharpened and better defined. This
general feature of pSVD solutions allows us, in this case, to identify the hemispherical dimple at

left and the wedge at right. It also reveals a truer geometry for the various object boundaries.

4. Shadowing artifacts are nearly completely eliminated, but the azimuthal artifacts are not greatly
changed within the object. The presence of these artifacts within the pSVD solution indicates that
the null space of the projection operator is very large and the choice of prior is still insufficient to

overcome the indeterminacy.

For comparison, the filtered back-projection (FPB) reconstruction using the same data is shown
in Fig. 13. It shares most of the problems of the SVD solution without the benefits of the pSVD
enhancement. Interestingly, FBP does a better boundary definition reconstruction on the central
areas of the object, but provides a poorer overall mass distribution. This is a natrual consequence
of the method.

We also performed reconstructions on a the finer grid of K = J = 500. For this case, our
computer could handle only twelve views. The results of these computations are shown in Figs. 14
through 16. The comparison discussion for the 30 view reconstuctions is generally applicable here

for the 12 view case. There are some notable exceptions and important comments.

1. The angular reconstruction artifacts have a lower spatial frequency due to the fewer num-

ber of views (12 versus 30). The shadowing effect from the dense interior object is still present.
2. Exterior zero density regions are well determined, but interior regions are less well determined
relative to the 30 view reconstructions. This is a consequence of greater size of the null space within

which we search for correctors.

3. The wedge feature is still captured by the pSVD process although its structure is somewhat
different in Figs. 12 and 15.

4. The hemispherical inclusion at the left of the main cylinder is not readily apparent with 12

views. A zero density region is indicated, but the geometry is not obvious.

5. The zero density region at the tip of the dense cone is not present in the 12 view case. This is

suggestive that it is an artifact in the 30 view reconstruction.
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Figure 11: SVD-based reconstruction of BCO4 section 610. The reconstruction is on the
circle interior to a 220 by 220 voxel grid. The data are a reduced resolution (K = 220, L = 30)

approximation of the full set.
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Figure 12: pSVD-based reconstruction of BCO4 section 610 using the nonnegativity prior.
The reconstruction is on the circle interior to a 220 by 220 voxel grid. The data are a reduced
resolution (K = 220, L = 30) approximation of the full set.
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Figure 13: Filtered-back-projection reconstruction from the identical data set used in the
30-view reconstructions shown in Figs. 11 and 12.

27



Figure 14: SVD-based reconstruction of BCO4 section 610. The reconstruction is on the
circle interior to a 500 by 500 voxel grid. The data are a reduced resolution (K = 500, L = 12)

approximation of the full set.
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Figure 15: pSVD-based reconstruction of BCO4 section 610 using the nonnegativity prior.
The reconstruction is on the circle interior to a 500 by 500 voxel grid. The data are a reduced
resolution (K = 500, L = 12) approximation of the full set.
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Figure 16: Filtered-back-projection reconstruction from the identical data set used in the
12-view reconstructions shown in Figs. 14 and 15.
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4.3 Comparative Analysis

The preceding discussions are suggestive that the pSVD is superior to both basic SVD and FBP
for the inversion of sparse noisy data. This section provides a simple comparative analysis of the
density profiles.

Up until this writing, the geometric and material property details of the BCO4 have remained
unknown to us. We chose this blind excercise for two reasons. First, we desired that our recon-
structions would remain unbiased by any knowledge of the object other than that gleaned from the
data. Second, we are working on other methods of reconstruction enhancements [3, 4] and wish to
remain ignorant of the object details until these methods have been applied. Because of this stance,
we choose not to perform quantitative comparisons at this time, though we encourage others to do
so if they desire. In the near future we will, if possible, report our quantitative findings.

For this report we have chosen to present comparisons of three density profile lineouts of the
BCO4 slice 610 for the 30-view reconstruction case. They are shown in Fig. 17. The three lineouts
are the voxel columns numbered 100, 120 and 180. For each lineout, we compare the density profiles
for reconstructions using FBP (red), SVD (green), and pSVD (blue). The results are shown in Figs.
18 through 20. The density units are chosen so that for each reconstruction the object has a total
mass of unity if the reconstruction is taken to be over a unit area.

In general, the pSVD lineouts indicate expected zero-density detection regions, boundary sharp-
ening, and apparent constant density regions. The pSVD solution also shows greater amplitude
oscillations relative to the other methods. The FBP lineouts exhibit positive mass out to the
fringes of the reconstruction, very poor detection of zero density regions, and a general smoothing

of features with no constant density regions indicated.

31



20

40

Voxel Row Index
B
(@]
o

60

80

160}

180+

200

220 | i i
100 120 180
Lineout Column Locations

Figure 17: Lineout locations for density profile comparisons.
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Figure 18: Lineout density profiles for column 100 of the BCO4 30-veiw reconstructions.
The three profiles are for FBP (red), SVD (green), and pSVD (blue) reconstructions.
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Figure 19: Lineout density profiles for column 120 of the BCO4 30-veiw reconstructions.
The three profiles are for FBP (red), SVD (green), and pSVD (blue) reconstructions.
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Figure 20: Lineout density profiles for column 180 of the BCO4 30-veiw reconstructions.
The three profiles are for FBP (red), SVD (green), and pSVD (blue) reconstructions.
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5 AHF and the Number-of-Views Question Revisited

One of the key motivations for studying SVD methods for tomographic reconstructions is the design
and feasibility of the Advanced Hydrotest Facility (AHF) planned to be constructed at LANL. It is
important to quantify the question: Will AHF provide images and reconstructions with sufficient
quality of information to justify its existence? SVD and pSVD methods can be used to study certain
aspects of this question. This section re-examines the question of how many radiographic views are
necessary for a reconstruction of a given quality. This question has been previously visited [2], but
the analysis was done without the benefit of pSVD enhancements.

Full quantitative answers are not yet possible. They require knowledge of the particular metrics
of interest. However, the type of study presented here is fully applicable to any metric. And, in
many cases, may even give qualitative results one might expect for typical AHF experiments.

Two studies examine the reconstruction quality dependence on the sparsity of data.

5.1 Fixed Resolution Study

This first study uses a variable number of views (3 < L < 20) and fixed resolutions (K = 100 and
J = 200) to examine the relative merit of SVD and pSVD reconstruction methods. Two objects
were chosen for this study: TO3 as a discretized density example and TO4 as a smoothly varying
density example. The Lo norm serves as the function of merit for comparison. All reconstructions
are perfomed on noisy data.

Reconstruction samples for TO3 are shown in Fig. 21. The left column figures show the
standard (noise non-amplifying) SVD reconstructions for (a) six, (c) 12, and (e) 20 views. The
right column figures show the corresponding pSVD reconstructions obtained using the discretized
density prior. Thus Fig. 21d is the same as Fig. 6f. A quick study of these reconstructions might
convince the reader that the quality of (b) and (c) are similar and also that the quality of (d) is
somewhat better than that of (e). This quick assessment is confirmed in Fig. 22 which shows the
norms as a function of number of views and of reconstruction method. Open circles correspond
to SVD reconstructions and closed circles to pSVD reconstructions. The letters correspond to the
reconstructions in Fig. 21. Consider the following points.

1. All reconstructions improve with the inclusion of more radiographic views.

2. The pSVD method is always much prefered over the SVD method for a given number of
views. This is true as long as a reasonable prior is chosen.

3. SVD to pSVD improvement can be significant even when the number of views is few.

4. Keep in mind that these norms are on reconstructions obtained from 1% to 5% noisy data.
It is reasonable to expect higher or lower norm values depending upon the character of the noise
in the data of interest.

5. In this example the norms of (b) and (c) are similar as noted previously by eye. Also, the
norm of (d) is less than that of (e) as also expected. pSVD reconstructions require about half the

number of views as SVD reconstructions to obtain similar figures of merit.

36



6. The pSVD norms are not so good as one might expect from a well chosen prior. This is
because the object space cannot capture the true circular boundaries. The densities are exactly
reproduced in all areas not within a voxel or two of a boundary.

Reconstruction samples for TO4 are shown in Fig. 23. The left column figures show the standard
(noise non-amplifying) SVD reconstructions for (a) six, (c) 12, and (e) 20 views. The right column
figures show the corresponding pSVD reconstructions obtained using the bounded-density prior.
Thus Fig. 23d is the same as Fig. 7f. Figure 24 shows the norms as a function of number of views
and of reconstruction method. Open circles correspond to SVD reconstructions and closed circles
to pSVD reconstructions. The letters correspond to the reconstructions in Fig. 23. Many of the
general comments discussed with TO3 are also applicable here. But a few additional comments are
appropriate. The SVD reconstructions for TO4 are of similar merit to those of TO3. But becuase
of the absence of a true object-capturing prior and the absence of sharp boundaries, the pSVD
reconstructions show significant improvement with L even at large values of L. For this example,
pSVD reconstructions require a little more than half the number of views as SVD reconstructions

to obtain similar figures of merit.
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Figure 21: Reconstruction examples of object TO3 with fixed resolution (K = 100 and
J = 200) and variable number of views. The left column figures are SVD reconstructions
for six, 12, and 20 views respectively. The right column figures are the corresponding pSVD
enhancements using the discretized densities prior. These reconstructions were made from

noisy data.
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Figure 22: Reconstruction Ly norms for object TO3 with fixed resolution (K = 100 and
J = 200) and variable number of views. Open circles represent the SVD method and closed

circles the pSVD mehtod. The letters correspond to the noisy-data reconstructions of Fig.
21.
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Figure 23: Reconstruction examples of object TO4 with fixed resolution (K = 100 and
J = 200) and variable number of views. The left column figures are SVD reconstructions
for six, 12, and 20 views respectively. The right column figures are the corresponding pSVD
enhancements using the discretized densities prior. These reconstructions were made from

noisy data.
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Figure 24: Reconstruction Ly norms for object TO4 with fixed resolution (K = 100 and
J =200) and variable number of views. Open circles represent the SVD method and closed

circles the pSVD method. The letters correspond to the noisy-data reconstructions of Fig.
23.
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5.2 Fixed Number-of-Views Study

This second study uses a fixed number of views (L = 12) and variable resolution (K = 16, 32, 64, 128,
and 256 with J = 2K) to examine the relative merit of SVD and pSVD reconstruction methods.
The same two objects were chosen for this study (TO3 and TO4). The Ly norm again serves as
the function of merit for comparison. All reconstructions are perfomed on noisy data.

Reconstruction samples for TO3 are shown in Fig. 25. The left column figures show the
standard (noise non-amplifying) SVD reconstructions for reconstruction resolutions of (a) 16, (c)
64, and (e) 256. The right column figures show the corresponding pSVD reconstructions obtained
using the discretized density prior. The reconstruction merit values for all computed resolutions are
shown in Fig. 26. The merit function value is computed by comparing the reconstruction densities
to a finely sampled approximation of the actual object (K = 1024). Consider the following points.

1. Increased resolution improves the reconstruction.

2. SVD reconstructions have similar merit values at all of the high resolution values. The pSVD
reconstructions, however, show a noticeable continued improvement even at the highest resolutions
in this study.

3. At the high resolutions, the pSVD reconstructions have merit values nearly twice as good
relative to the SVD reconstructions. At the low resolutions, the merits are similarly poor.

4. Note that even a fairly low resolution pSVD reconstruction does a better job of capturing the
original object than a high resolution SVD reconstruction. For example, note that reconstruction
d is preferred over reconstruction e.

Reconstruction samples for TO4 are shown in Fig. 27. The reconstruction merit values for all
computed resolutions are shown in Fig. 28. The interpretation of these figures is similar to that of
the previous discussion of TO3. The exception is the use of the nonnegativity prior in computing
the pSVD solutions. The conclusions are essentially unchanged.

Note, however, that the reconstruction merits for TO4 are larger than those for TO3. We
expect this result because the prior/object match is better for TO3.

What we have found is that for a variety of cases simple priors can be used to significantly
reduce the required number of views or required reconstruction resolution given a reconstruction

merit constraint.
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Figure 25: Reconstruction examples of object TO3 from noisy data, a fixed number of views,
L = 12 and variable detector and reconstruction space resolutions. The left column figures
are SVD reconstructions for K = 16, 64, 256, respectively. The right column figures are the
corresponding pSVD enhancements using the discretized densities prior. These reconstruc-

tions were made from noisy data.
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Figure 26: Reconstruction Ly norms for object TO3 from noisy data, a fixed number of views
and variable reconstruction space resolution K. Open circles represent the SVD method and
closed circles the pSVD method. The letters correspond to the noisy-data reconstructions
of Fig. 25.
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Figure 27: Reconstruction examples of object TO4 from noisy data, a fixed number of views,
L = 12, and variable detector and reconstruction space resolutions. The left column figures
are SVD reconstructions for K = 16, 64, 256, respectively. The right column figures are the
corresponding pSVD enhancements using the bounded densities prior. These reconstructions

were made from noisy data.
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Figure 28: Reconstruction Ly norms for object TO4 from noisy data, a fixed number of views
and variable reconstruction space resolution K. Open circles represent the SVD method and
closed circles the pSVD method. The letters correspond to the noisy-data reconstructions
of Fig. 27.
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6 Additional pSVD Reconstruction Examples

We include in this section additional examples of the pSVD method that are collected from various
test cases. Discussion of these examples is limited to providing test conditions and pointing out
some interesting features. All of the figures (Figs. 29 through 43) show the object (a) and five
reconstructions using the following priors: (b) none; (c) p > 0; (d) 0 < p < 1; (e) p € {0,1}; (f)
p € {0,0.25,0.5,0.75,1}. The Lo merit function value is printed next to each reconstruction.
Figures 29 through 43 show reconstructions of voxelized versions of various objects. Because
the objects are exactly defined on a square voxel grid, it is, in principle possible to obtain an exact
reconstruction (unlike any examples shown thus far). Often we cannot attain an exact reconstrcu-
tion because inversions are underdetermined and the data is noisy. The data noise level is 1% to
5%, and the test cases are for K = 50,J = 100, L = 12. For simple objects and for good choices of

prior the reconstructions are exact in spite of limited noisy data. Some interesting results follow.

Fig. 29: This is a spatially discretized approximation of TO1l. This simple object is easily re-

constructed exactly with a suitable choice of prior.

Fig. 30: This is a spatially discretized approximation of TO2. This object has more detail than
TO1 but it is also reconstructed exactly without difficulty.

Fig. 31: This is a spatially discretized approximation of TO3. The final reconstruction is quite
good with only six pixels different from the actual object. The large value for the Ls norm (0.054)
reflects the fact that the six off values differ from the exact value by a good margin (0.25).

Fig. 32: This is a spatially discretized approximation of TO4. This discretization allows a some-
what better pSVD reconstruction (d) than that of Fig. 7 (see Table 1).

Fig. 33: This is a spatially discretized approximation of TO5. As in the previous example, this
discretization allows a somewhat better pSVD reconstruction (d) than that of Fig. 8 (see Table 1).

But this object is just not well reconstructed using the priors of this report.

Fig. 34: A simple Gaussian is readily reproduced with good accuracy. The initial SVD recon-

struction has no negative values; thus, the priors do not improve accuracy.

Fig. 35: This object is similar to TO4 with a central region altered by the addition of a 1/3-

size rotated copy of itself.
Fig. 36: This object is a random positive density pattern modulated by a Gaussian. This is

the most difficult test case because the object is characteristic of singular vectors associated with

very small singular values and of null vectors. The pSVD solutions cannot provide significant im-
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provement mainly due to the lack of negativity corrections as was noted with Fig. 34).

Fig. 37: This object is a small binary-density object within the field of view. It shows the ease
with which simple objects are exactly captured with pSVD with noisy data.

Fig. 38: This object is of trinary density with p = 1 for the inner circle, p = 0.6 for the ring,
and p = 0 exterior to these. Note that the five-density discretized prior does poorly because the

ring density is not in the list of assumed densities.

Fig. 39: This object is a collection of Gaussians superimposed by addition and renormalized
to have a maximum density of unity. The reconstructions using simple priors are fairly good. Some
of the discrepancy in (c) may be due to the fact that the object is actually defined over the en-

tire square grid while the reconstructions are performed only within the circle interior to this square.

Fig. 40: This object is similar to TO4. It was constructed by threshholding TO4 between densities
of 0.1 and 0.9 and then rescaling linearly back to the density interval [0,1]. Thus, it has significant
regions of both zero and unit density while being smooth elsewhere. The reconstructions are much
better than those of TO4.

Fig. 41: This object is a unit density ring with zero interior density and a random selection
of zero density voids. This is one of the most dramatic examples of pSVD. Remember that these
reconstructions are from noisy data.

Fig. 42: This object is a binary-density version of TO4 using a density threshhold of 0.3.

Fig. 43: This object is a unit density circle with a simulated-fracture interior void pattern. The

pSVD reconstructions are stunningly accurate.
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Figure 29: Reconstruction examples of a voxelized version of object TO1. This object (a)
has binary density and is exactly described on a 50 by 50 grid of densities. The pSVD
reconstructions use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e)
p€{0,1}; (f) p € {0,0.25,0.5,0.75,1}. The L, merit function value is printed next to each

reconstruction.
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Figure 30: Reconstruction examples of a voxelized version of object TO2. This object (a)
has binary density and is exactly described on a 50 by 50 grid of densities. The pSVD
reconstructions use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e)
p€{0,1}; (f) p € {0,0.25,0.5,0.75,1}. The L, merit function value is printed next to each

reconstruction.



Figure 31: Reconstruction examples of a voxelized version of object TO3. This object (a)
is of discrete density and is exactly described on a 50 by 50 grid of densities. The pSVD
reconstructions use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e)
p€{0,1}; (f) p € {0,0.25,0.5,0.75,1}. The L, merit function value is printed next to each

reconstruction.
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Figure 32: Reconstruction examples of a voxelized version of object TO4. This object (a) is
a discrete density approximation to a smooth variation and is exactly described on a 50 by
50 grid of densities. The pSVD reconstructions use the following prior knowledge: (b) none;
(c)p>0;(d)0<p<T1;(e) pef0,1}; (f) p€{0,0.25,0.5,0.75,1}. The L, merit function

value is printed next to each reconstruction.
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Figure 33: Reconstruction examples of a voxelized version of object TO5. This object (a) is
a discrete density approximation to a smooth variation and is exactly described on a 50 by
50 grid of densities. The pSVD reconstructions use the following prior knowledge: (b) none;
(c)p>0;(d)0<p<T1;(e) pef0,1}; (f) p€{0,0.25,0.5,0.75,1}. The L, merit function

value is printed next to each reconstruction.

93



0.681 0.202

Figure 34: Reconstruction examples of a discretized simple Gaussian. This object (a) is
exactly described on a 50 by 50 grid of densities. The pSVD reconstructions use the
following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e) p € {0,1}; (f)
p € {0,0.25,0.5,0.75,1}. The Ly merit function value is printed next to each reconstruction.
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Figure 35: Reconstruction examples of an object similar to TO4. This object (a) is exactly
described on a 50 by 50 grid of densities. The pSVD reconstructions use the following prior
knowledge: (b) none; (¢) p>0; (d) 0 < p < 1; (e) p € {0,1}; (f) p € {0,0.25,0.5,0.75,1}.
The L, merit function value is printed next to each reconstruction.
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Figure 36: Reconstruction examples of a random nonnegative density pattern modulated by
a Gaussian. This object (a) is exactly described on a 50 by 50 grid of densities. The pSVD
reconstructions use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e)
p€{0,1}; (f) p € {0,0.25,0.5,0.75,1}. The L, merit function value is printed next to each

reconstruction.
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Figure 37: Reconstruction examples of a small unit density object. This object (a) is exactly
described on a 50 by 50 grid of densities. The pSVD reconstructions use the following prior
knowledge: (b) none; (¢) p>0; (d) 0 < p < 1; (e) p € {0,1}; (f) p € {0,0.25,0.5,0.75,1}.
The L, merit function value is printed next to each reconstruction.
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Figure 38: Reconstruction examples of a trinary-density object with p = 1 for the inner
circle, p = 0.6 for the ring, and p = 0 exterior to these. This object (a) is exactly described
on a 50 by 50 grid of densities. The pSVD reconstructions use the following prior knowledge:
(b) none; (¢) p>0; (d) 0< p<1;(e) pe{0,1}; (f) p€ {0,0.25,0.5,0.75,1}. The L, merit

function value is printed next to each reconstruction.
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Figure 39: Reconstruction examples of a sum of randomly-placed and sized Gaussians. This
object (a) is exactly described on a 50 by 50 grid of densities. The pSVD reconstructions
use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e) p € {0,1}; (f)
p € {0,0.25,0.5,0.75,1}. The Ly merit function value is printed next to each reconstruction.



Figure 40: Reconstruction examples of a modified TO4 (see text for the exact object de-
scription). This object (a) is exactly described on a 50 by 50 grid of densities. The pSVD
reconstructions use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e)
p€{0,1}; (f) p € {0,0.25,0.5,0.75,1}. The L, merit function value is printed next to each

reconstruction.
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Figure 41: Reconstruction examples of a unit-density ring with random zero-density voids.
This object (a) is exactly described on a 50 by 50 grid of densities. The pSVD reconstructions
use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e) p € {0,1}; (f)
p € {0,0.25,0.5,0.75,1}. The Ly merit function value is printed next to each reconstruction.



Figure 42: Reconstruction examples of a binarized TO4 (density threshhold of 0.3). This
object (a) is exactly described on a 50 by 50 grid of densities. The pSVD reconstructions
use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e) p € {0,1}; (f)
p € {0,0.25,0.5,0.75,1}. The Ly merit function value is printed next to each reconstruction.
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Figure 43: Reconstruction examples of a unit density circle with a simulated-fracture interior
void pattern. This object (a) is exactly described on a 50 by 50 grid of densities. The pSVD
reconstructions use the following prior knowledge: (b) none; (c) p > 0; (d) 0 < p < 1; (e)
p€{0,1}; (f) p € {0,0.25,0.5,0.75,1}. The L, merit function value is printed next to each

reconstruction.
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